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Some Properties of Multigravity Theories
and Discretized Brane Worlds

C. Deffayet1,3,4 and J. Mourad2,3

We review some properties of solutions to 5D Einstein gravity with a discrete fifth
dimension. Those properties depend on the discretization scheme we use. In particular,
we find that the neglect of the lapse field (along the discretized direction) gives rise to
Randall–Sundrum-type metric with a negative tension brane. However, no brane source
is required. The inclusion of the lapse field gives rise to solutions whose continuum
limit is gauge fixed by the discretization scheme. We show also that the models allow
a continuous mass spectrum for the gravitons with an effective 4D interaction at small
scales.
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1. INTRODUCTION

Theories with many metrics coupled together were investigated in the past in
relation to strong interaction (Chamesddine, 2003; Isham et al., 1971; Isham and
Storey, 1978; Salam and Strathdee, 1977), and more recently by various authors
(Arkani-Hamed et al., 2003; Arkani-Hamed and Schwartz, 2003; Damour et al.,
2002, 2003; Damour and Kogan, 2002; Schwartz, 2003) in particular in relation
with discrete extra-dimensions (Arkani-Hamed et al., 2001, 2003; Arkani-Hamed
and Schwartz, 2003; Hill et al., 2001; Schwartz, 2003). Such theories can be a tool
to investigate the various problems associated with “massive” gravity but have
also their own interests. In the perspective of better understanding theories with
multiple gravitons, it is interesting to contrast such theories obtained from a parent
theory which is known to be fully consistent with the parent theory itself. This has
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been done in the past using Kaluza–Klein compactification (Aulakh and Sahdev,
1985; Dolan and Duff, 1984; Nappi and Witten, 1989).

In the first part of this talk, after a short introduction of the formalism used
(Section 2) and developed in Deffayet and Mourad (2003), we follow a similar path
(Section 3) by comparing simple solutions of theories obtained by discretizing one
space-like dimension in five-dimensional (5D) general relativity to solution of the
continuum theory (Deffayet and Mourad, 2004). Namely we consider the extra
dimension to be given by a one-dimensional lattice, to each point of the lattice is
associated a four-dimensional (4D) space-time with a metric. We determine the
coupling of the metrics by the requirement that the continuum limit should be
given by five-dimensional gravity. The discrete action should respect as much as
possible the symmetries of the 5D action, otherwise new degrees of freedom appear
which are in general ghost-like. The actions we shall consider break explicitly the
reparametrization invariance along the fifth direction. Although at the linear level
the theory is free from ghosts, they may appear at the nonlinear level (Boulware
and Deser, 1972).

In the last part of this talk, we show that the theory considered have also the
interesting property to yield a 4D gravitational potential at small distances which
becomes 5D at large distances, while gravity is mediated by a continuum of massive
gravitons (Deffayet and Mourad, 2004). This is similar to what is happening in the
brane-induced gravity model of Dvali et al. (2000 a).

2. DISCRETE VS. CONTINUUM THEORY

For the purpose of discretizing a space-like dimension, parametrized by co-
ordinate y, it is convenient to use a 4 + 1 splitting of space-time and rewrite (after
an integration by part) the 5D Einstein Hilbert action as

M3
(5)

∫
d4x dy

√−gN {R − 2�̃ + Kµν Kαβ(gµνgαβ − gµαgνβ)}, (1)

where M(5) is the 5D reduced Planck mass, Kµν is the extrinsic curvature of surfaces
Hy located at constant y, and we have introduced in a standard way5 the lapse N ,
the shift Nµ, and induced metric gµν on Hy , whose Ricci scalar is denoted by R.
The extrinsic curvature is defined by

Kµν = 1

2N (g′
µν − DµNν − Dν Nµ), (2)

where Dµ is the covariant derivative associated with the induced metric gµν and a
prime denotes an ordinary derivative with respect to y. The fields N , Nµ, and gµν

are simply related to the components of the 5D metric g̃AB by

g̃µν = gµν , (3)

5 Note however that the surface located at constant y are time-like, unlike in the usual ADM splitting.
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g̃µy = Nµ ≡ gµα Nα , (4)

g̃yy = N 2 + gµν NµN ν . (5)

Theories which will be of interest in this work can be obtained from the Einstein–
Hilbert action (1), where one discretizes the continuous coordinate y with a spacing
a between two adjacent sites (labelled by an index i). It was shown in Deffayet and
Mourad (2003) how to obtain such a discretization, maintaining y-dependent 4D
gauge invariance on each site. This can be done by the mean of link fields Xµ (i, i +
1; x) (Arkani-Hamed et al., 2003; Arkani-Hamed and Schwartz, 2003; Schwartz,
2003), mapping between site i and site i + 1, which were explicitly built out of the
5D metric in Deffayet and Mourad (2003). In analogy with transverse latticification
of gauge theories the link field buildup in Deffayet and Mourad (2003) is a path-
ordered exponential the vector field N acting on coordinate functions xµ. At leading
order in the transverse lattice spacing a, Xµ is given by

Xµ(i, i + 1, x) = xµ + aNµ(yi , x) + O(a2), (6)

where yi is the y coordinate of site i (one has yi ≡ ia). We then replace the y
derivatives, appearing in action (1) only in the extrinsic curvature Kµν , by expres-
sions made up from a transport operator built out of the link field and acting on
the metric of each site (see Deffayet and Mourad, 2003, 2004. If one then makes
a gauge choice such that Xµ(i, i + 1, x) = xµ, one is led to consider theories of a
set of 4D metrics gi

µν , and 4D scalar lapse field Ni with actions of the form

S[gi , Ni ] = �i M2
(4)

∫
d4x

√−giNi (R(gi ) − 2�) −
∫

d4x
M2

(4)

Ni
V (gi , gi+1),

(7)

where V (gi , gi+1) is an interaction term between the metrics gi
µν and gi+1

µν , and
M(4) is a mass scale which sets the coupling scale between the metric on a given
site and matter sources that one may wish to put on the same site.

Action (7) is a simple- minded discretization of the 5D pure gravity Einstein-
Hilbert action (1), as can be seen explicitly using the following identification:

m2 = 1

a2
, (8)

M2
(4) = M3

(5)a, (9)

� = �̃, (10)

gi
µν(xµ) = g̃µν(xµ, yi ), (11)

Ni (x
µ) = N (xµ, yi ). (12)
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If one insists in keeping the link with the 5D theory, one should verify the equation
of motion for Xσ . The latter read (in the gauge Xµ = xµ)

0 = 2Ni√−gi
∂µ

(√−gi

Ni
gi+1

σν

(
gi+1

αβ − gi
αβ

)(
gµν

i gαβ

i − gµα

i gνβ

i

))

−(
∂σ gi+1

µν

)(
gi+1

αβ − gi
αβ

)(
gµν

i gαβ

i − gµα

i gνβ

i

)
, (13)

where gµν

i is the inverse metric of gi
µν . This reduces to the equation of motion of

the shift in the continuum limit. This equation is somehow similar to a Kaluza-
Klein consistency condition (Duff et al., 1984; Jordan, 1947; Thiry, 1948). Note
that the index i can be envisioned as labelling theory space sites in the spirit of
the deconstruction program of the literature (Arkani-Hamed et al., 2003; Arkani-
Hamed and Schwartz, 2003; Schwartz, 2003), but theories under investigation here
can also be considered without an explicit reference to a continuum limit, simply as
theories of multigravity (Chamesddine, 2003; Isham et al., 1971; Isham and Storey,
1978; Damour et al., 2002, 2003; Damour and Kogan, 2002; Salam and Strathdee,
1977). In the latter case, one does not have to consider Eq. (13). We will, for most
of the cases discussed in this paper, not include any matter fields so that each of
the sites i will only be considered endowed with a cosmological constant �.

3. DISCRETIZED BRANE WORLDS

We first set from the beginning the lapse fields Ni to one in the multigravity
action S[gi , Ni ] and consider solutions to the equations of motion derived from
the simplified action for the metrics gi

µν , S[gi , 1]. We wish here to compare these
solutions with solutions of the continuum theory defined by action (1) and seek
solutions of the form

gi
µν = �iηµν (14)

with �i constants. With such a choice, Eq. (13) is automatically fulfilled. After
a straightforward calculation, the equation of motion for the metric gi reduces to
the sequence defined by

−λ = −2 + fi + ( fi−1)−1, (15)

where λ = 2�/3m2 and fi = �i+1/�i . The general solution of which is given by

� j = (( f+) j + K( f−) j )
�0

1 + K , (16)

where f+ and f− are the two fixed points (for λ obeying λ(−1 + λ/4) > 0) of the
sequence (15), and K is an integration constant, related to f0 by

K = f+ − f0

f− − f0
. (17)
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If one chooses fi to lie initially on one of the fixed points, the solution for the
conformal factor �i is given by

�i
± = �0

±( f±)y j /a . (18)

In the continuum limit when the the discretization step a goes to zero, this leads to

g j
µν ∼ �0

± exp

(
±

√
−2

3
�̃y j

)
ηµν. (19)

It matches a Poincaré patch of Ad S5 parametrized à la Randall–Sundrum (namely
it is the metric used in Randall and Sundrum (1999a,b) if one removes there the
absolute value in the exponential, that is to say without cutting off the AdS boundary
by a positive tension brane). On the other hand, the most general solution (for a
positive K) has a continuum limit given by

gi
µν = 2�0

√
K

(1 + K)
cosh

(√
−2

3
�(yi − γ )

)
ηµν , (20)

where γ is a constant given by γ = √−3/8� ln(K). This solution has exactly the
same asymptotics as yi goes to ±∞ as the Randall-Sundrum metric (Randall and
Sendrum, 1999a,b) with a negative tension brane placed at y = γ . This is a quite
remarkable feature since no brane has been considered. One can show that this
result is robust under a change in the disretization procedure considered (Deffayet
and Mourad, 2004).

There is an easy way to understand these solutions by comparing the equations
of motion of the continuum theory (defined by action (1)) to the ones of the
multigravity theory (15). If one seeks a solution of the continuum theory of the form
gµν(xα , y) = �(y)ηµν , with N set to one; one finds that the most general solution
of the equation of motion for gµν deduced from action (1) is given for � by a linear
combination of exp (ky) and exp (−ky) with k given by

√−2�/3. This matches
with what is found in the discretized theory. Indeed, in the limit where a goes to
zero, Eq. (15) reduces to equation the equation of motion for the metric gµν deduced
from action (1). However, in the continuum theory, the equation of motion for N
allows to keep the decreasing or increasing exponential, but not a combination
of the two. This also enables to understand that we did not find the solution
with a positive tension brane (which would have been very interesting in many
respects). Indeed, a linear combination of exponentials exp ±ky (with positive
coefficients) is an increasing function for large positive y and a decreasing function
for large negative y. So that the asymptotic jump of the first y derivative of the 4D
metric across the brane, defined as [�′(+∞) − �′(−∞)]/[�(+∞) + �(−∞)],
is necessarily positive. This in turn means that the brane tension has to be negative,
as can be seen from the junction conditions.

It is possible to find also in the discrete theory considered so far a discretized
Randall-Sundrum space-time with a positive tension brane. To do so, one can
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introduce a localized brane source in the discrete theory. This amounts to change in
the cosmological constant � of action (7) at one site. The value of this cosmological
constant must then be precisely tuned (in a manner shown in Deffayet and Mourad,
2004) to the value of the cosmological constant on the other sites, in a way similar
to what is happening in the continuum theory. In the continuum limit, this tuning
gives back the Randall-Sundrum tuning condition between the brane tension and
the bulk cosmological constant (Randall and Sundrum, 1999 a,b).

So far we have only discussed cases where the Ni fields were dropped from
the action (7). However, as we just discussed, this dropping introduces spurious
solutions when compared with solutions of the continuum theory. If one then
reintroduces Ni and seeks solutions similar to the previous, one can as well readily
derive equations of motions from action (7), which read

√
−λNi = εi ( fi − 1), (21)

−λNi = 1

Ni
( fi − 1) − 1

Ni−1

(
1 − 1

fi−1

)
, (22)

here εi = ±1. This can be solved for both Ni and �i . The obtained solution can
be seen to be, as previously, a discretized given parametrization of a Poincaré
patch of Ad S5 (where the gauge is set by the disretization scheme chosen). The
fact that one can solve for both Ni and �i is a consequence of the fact that the
y-reparametrization invariance is explicitly broken in the discrete theory. One can
however choose a discretization scheme which restores the indetermination of Ni ,
e.g., by choosing a potential given by

V (gi−1, gi , gi+1) = −m2

16

√−gi
(
gi+1

µν − gi−1
µν

)(
gi+1

αβ − gi−1
αβ

)(
gµν

i gαβ

i − gµα

i gνβ

i

)
.

(23)
With this interaction term, the action S[gi , Ni ] also agrees with action (1) in the
continuum limit. However doing so, one finds again some solutions which do not
have any continuum counterpart, namely change in the signature from site to site.

4. EFFECTIVE 4D GRAVITY

We turn now to determine the gravitational potential without the lapse field
(i.e., in the theory S[gi , 1]) and consider the discretization scheme given in the
previous subsection. We assume here that the cosmological constant vanishes
and so we can perturb around flat space-time. To quadratic order in the metric
perturbation hi

µν , the interaction term (23) reads

V (hi−1, hi , hi+1) = −m2

16

(
hi+1

µν − hi−1
µν

)(
hi+1

αβ − hi−1
αβ

)
(ηµνηαβ − ηµαηνβ). (24)
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To diagonalize this interaction, we define ȟµν by

ȟµν(xα , θ ) =
∑

n

hn
µν(xα) einθ . (25)

The quadratic action is then an integral over θ of Pauli–Fierz actions with a con-
tinuous mass spectrum given by

m2(θ ) = sin2 θ

a2
. (26)

And the gravitational potential � j (r ), between two unit masses separated by r and
placed at sites i and i + j , can be obtained summing over Pauli-Fierz propagators.
The outcome of the calculation can also be simply understood from discretizing the
Laplacian equation with the same discretization scheme as above. The discretized
equation reads

∂2� j + (� j+2 + � j−2 − 2� j )

4a2
= 4πGNδ(r)δj,o, (27)

where we have reintroduced the Newton constant GN. The Fourier transform �̌,
as defined above, verifies

∂2�̌(r, θ ) − m2(θ )�̌(r, θ ) = 4πGNδ(r). (28)

Notice that the mass spectrum is bounded from above by the inverse lattice spacing
a−1. A continuous mass spectrum is reminiscent of the infinite dimensional models
of Dvali et al. (2000b) and Gregory et al. (2000). The gravitational potential can
now be readily put in th̀e form

� j (r ) = −GN

r
=

∫ π

0

dθ

π
e− r

a sin θ cos jθ (29)

When r � a then the integral can be approximated by δ j,0 and the potential reduces
to the 4D Newtonian potential

� j (r ) = −GN

r

(
δ j,0 + O

( r

a

))
, r � a. (30)

When r � a, then the integral can be approached by∫ π/2

0

dθ

π
e− r

a θ cos jθ +
∫ π

π/2

dθ

π
e− r

a (π−θ ) cos jθ

= 1

πa

r

r2 + a2 j2
(1 + (−1) j + O(e

−r
a )), (31)

so that the gravitational potential is of the form of a 5D potential

� j (r ) = − G5

r2 + ( ja)2
, (32)
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if j is even, with the 5D gravitational constant being given by

G5 = 2GN

πa
. (33)

When j is odd, the gravitational potential is exponentially small. Gravity is thus
four dimensional at small length scales and five dimensional at large scales. Choos-
ing a very large (of the order of the Hubble scale) allows a very simple modification
of gravity at large scales in the spirit of the models of references (Dvali et al., 2000b;
Gregory et al., 2000; Kogan et al., 2000; Kogan and Ross, 2000). Note that we
could have started from a finite number N of sites. This corresponds to an extra
dimension which is compact with a length scale R = Na. The graviton spectrum
would have been discrete with a spacing of order 1/N and would have remained
bounded. In this case, the 4D regime is obtained for both small scales r � a and
large scales r � R, the intermediate scales being five dimensional a � r � R.
The qualitative features of this potential are not sensitive to the particular form of
the discretization scheme we have used. On the other hand, it is well known that the
tensorial structure of the propagator of massive spin 2 fields differs dramatically
from the massless one. This leads to the vDVZ discontinuity at the linearized level
which is manifested by, e.g., an order 1 difference in light bending (Iwasaki, 1970;
van Dam and Veltman, 1970; Zakharov, 1970). In this respect, when R is infinite,
we expect the discontinuity to be present since we have a continuous spectrum
of massive gravitons. This is similar to the brane models with an extra infinite
dimension (Dvali et al., 2000b; Gregory et al., 2000; Kogan et al., 2000; Kogan
and Ross, 2000). When R is finite, however, the spectrum is discrete and there is
no discontinuity.

5. CONCLUSIONS

In this talk, we have summarized some properties of solutions of 5D general
relativity with a discrete fifth dimension and compared them to solutions of the
continuum theory. Those solutions were discussed more extensively in Deffayet
and Mourad (2004) with some other solutions (in particular cosmological solu-
tions). Depending on the discretization scheme used, we have shown that some of
the solutions of the discrete theory exactly match those of the continuum, while
others do not. In general, the discretization explicitly breaks reparametrization
along the discrete dimension. This gets reflected in the fact that for solution we
have considered, corresponding to slicing of Ad S5 by Minkowski space, the equa-
tions of motion of the discrete theory enable in general to determine both the lapse
field and the 4D metric. This is to be contrasted with the continuum theory where
the lapse field cannot be determined by the equations of motion. However, we
have shown that one can find a given discretization scheme in which it remains
undetermined. More importantly, some of the solutions of the discrete theory
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exhibit very dramatic differences with those of the continuum. As shown in
Deffayet and Mourad (2004), one can find signature change of the 4D metric
but also avoidance of singularities which would be present in the continuum. In
addition we have also found a brane world looking bulk space-time, with no brane
source in the equation of motion and no fine-tuning. This solution would corre-
spond in the continuum theory to a negative tension brane. We have investigated
the static gravitational potential and found it realistic when the lattice spacing is
very large.

We can look at our results from two different perspectives. On one hand, they
exemplify the difficulties which arise upon deconstruction of gravity even at the
classical level: the neglect of the lapse fields leads to spurious solutions, while
their inclusion only partially solves this problem, On the other hand, they point out
interesting directions in multigravity theories: they allow, as we showed, simple
modifications of gravity at large scales and brane-like solutions with no branes.
One can speculate on the possibility to reproduce these results, in some more com-
plex multigravity, without the various drawbacks mentioned in the Introduction.
It would also be interesting to find a solution corresponding to the discretization
of RS type—gravity localizing—metric (Randall and Sundrum, 1999a,b), and at
the same time avoiding fine-tuning conditions.
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